Hierarchical Metric Learning for Fine Grained Image Classification

نویسندگان

  • Akashdeep Goel
  • Biplab Banerjee
چکیده

This paper deals with the problem of fine-grained image classification and introduces the notion of hierarchical metric learning for the same. It is indeed challenging to categorize fine-grained image classes merely in terms of a single level classifier given the subtle inter-class visual differences. In order to tackle this problem, we propose a two stage framework where i) the image categories are represented hierarchically in terms of a binary tree structure where different subset of classes are present in the non-leaf nodes of the tree. This is accomplished in an automatic fashion considering the available training data in the visual domain, and ii) a (non-leaf) node specific metric learning is further deployed for the categories constituting a given node, thus enforcing better separation between both of its children. Subsequently, we construct (non-leaf) node specific binary classifiers in the learned metric spaces on which testing is henceforth carried out by following the outcomes of the classifiers sequence from root to leaf nodes of the tree. By separately focusing on the semantically similar classes at different levels of the hierarchy, it is expected that the classifiers in the learned metric spaces possess better discriminative capabilities than considering all the classes at a single go. Experimental results obtained on two challenging datasets (Oxford Flowers and Leeds Butterfly) establish the superiority of the proposed framework in comparison to the standard single metric learning based methods convincingly.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Zero-Shot Fine-Grained Classification by Deep Feature Learning with Semantics

Fine-grained image classification, which aims to distinguish images with subtle distinctions, is a challenging task due to two main issues: lack of sufficient training data for every class and difficulty in learning discriminative features for representation. In this paper, to address the two issues, we propose a two-phase framework for recognizing images from unseen fine-grained classes, i.e. ...

متن کامل

Few-Shot Learning with Metric-Agnostic Conditional Embeddings

Learning high quality class representations from few examples is a key problem in metric-learning approaches to few-shot learning. To accomplish this, we introduce a novel architecture where class representations are conditioned for each few-shot trial based on a target image. We also deviate from traditional metric-learning approaches by training a network to perform comparisons between classe...

متن کامل

Fine-grained categorization via CNN-based automatic extraction and integration of object-level and part-level features

Fine-grained categorization can benefit from part-based features which reveal subtle visual differences between object categories. Handcrafted features have been widely used for part detection and classification. Although a recent trend seeks to learn such features automatically using powerful deep learning models such as convolutional neural networks (CNN), their training and possibly also tes...

متن کامل

Visual-textual Attention Driven Fine-grained Representation Learning

Fine-grained image classification is to recognize hundreds of subcategories belonging to the same basic-level category, which is a highly challenging task due to the quite subtle visual distinctions among similar subcategories. Most existing methods generally learn part detectors to discover discriminative regions for better classification accuracy. However, not all localized parts are benefici...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1708.01494  شماره 

صفحات  -

تاریخ انتشار 2017